ASCEDS White Paper

Maintained by: Florin B. Manolache
florin@andrew.cmu.edu

I. INTRODUCTION

This is a white paper based on [1], describing the structure
and the functionality of the Automated SSL/TLS Certificate
Distribution System.

There was a time in the early days of the Internet, when
all the communication online was clear text, nobody was
talking about encryption. In the late 90’s, traffic sniffing went
rampant, credentials were harvested, ssh made its debut to
replace ftp and telnet with encrypted channels [2]. While
encryption was useful, nobody had any quick way to verify
who sits at each end of the communication. So black hats
got creative, developing a range of other tricks, like man in
the middle attacks [3], for performing active eavesdropping
in their pursuit for credentials. These attempts were promptly
countered by the appearance of Certificate Authorities (CAs)
which introduced trust by signing encryption certificates, this
way vouching for the identity of the entities using them. But
who can vouch for the CA? Well established and well known
companies like Microsoft, Google, Mozilla, Apple, started
root programs [4], including CAs’ own certificates into their
software, to establish the much needed trust into a list of
CAs. Since getting into a root list is a very slow process
because it depends on the software upgrade cycle which can
take decades, newer generations of CAs were vouched by older
CAs, transforming certificates into certificate chains.

Typically, a CA signing process is based on a Certificate
Signing Request (CSR) which contains data about the en-
tity using the certificate and other information like Subject
Alternate Names (SANs) for servers which run virtual host
names. All this info, together with validity and lifespan data,
are incorporated into the signed certificate, the final result
consisting of a private key, a public key, and a chain of public
keys belonging to the series of CAs enlisted by various root
programs or vouching for each other [5].

The SSL/TLS certificates are very popular in services run-
ning on modern computing devices. One can easily observe
the following trends:

« certificates were originally used mainly by web servers
distributing private contents; currently they are used by
most services with network exposure: e.g. all web servers,
protocols involved in messaging, email handling and
delivery, even ssh authentication;

« root programs are forcing shorter lifespans for the signed
certificates onto CAs. (currently no more than 13 months
enforced by Apple in 2020 [6]); shorter lifespans allow
for more efficient encryption protocol upgrades, and for

maintaining trust through more frequent checks of the
identity.

Historically, certificates were signed by a CA as a paid
service, being a significant expense for small companies or
individuals. After various attempts of offering access to free or
cheap certificates made by various entities, the standard was
set by Let’s Encrypt [7] by providing short lived (90 days)
certificates which can be renewed through the Automated
Certificate Management Environment (ACME) protocol [8].
ACME was implemented by Electronic Frontier Foundation
(EFF) through a software named certbot [9] which is python-
based, thus available for most devices and operating systems.

While Let’s Encrypt certificates are really the way to go for
small companies or single servers, the system is pretty much
unusable for an enterprise environment. The main problems
experienced by the authors were connected to:

« the lack of modularity to help extend certificate usage to
new services;

« major problems when certbot was enforcing certain con-
figuration paradigms onto the apache web server, which
won’t play nicely with a large number of virtual hosts
running various software packages;

« limits over how many certificates can be generated per
month.

But Carnegie Mellon University had access to the InCom-
mon CA [10] which offers an ACME interface working quite
flawlessly with certbot. However, all the certificate manage-
ment operations through ACME were confined to a single
server and protected by a set of credentials. Our solution was to
create the Automated SSL/TLS Certificate Distribution System
(ASCEDS) which is presented in this paper. ASCEDS au-
tomatically generates/renews certificates and distributes them
to any number of servers on the network. It also allows for
manual generation/renewal/revoking of certificates through a
web interface and a CLI.

The ASCEDS design is presented next. The following
sections describe different typical cases of using ASCEDS,
while showing the role of utilities included with the software.

II. ASCEDS ARCHITECTURE
The main design objectives of ASCEDS were the following:

o simple structure: one certificate manager governs cer-
tificates for all the servers in the authorized domains,
organized in a site;

« cfficient operation: the renewal process should be as
transparent as possible, and should involve little or no
human intervention;

« flexibility: services using certificates can be easily added
or removed, and their configuration scripts can be cus-
tomized in a way which is robust to ASCEDS upgrades;

« accountability: multiple users can be configured on the
certificate manager interface, each user having authority
over a different set of domains;

« friendly functionality: the interface should offer step-by-
step guidance and feedback for users unfamiliar with
ASCEDS;

o completeness: the interface and the scripts should offer
modular and flexible solutions for most of the operations
regularly performed with certificates.

The functional structure of ASCEDS shown in Fig. 1.
All the servers requiring certificates are grouped into a site
governed by a certificate manager which is authorized to get
certificates from a CA. The generate/reconfigure/revoke cer-
tificate manipulation is performed by the certificate manager
based on secret tokens issued by the CA, and valid for a
set of domain names. The certificate manager communicates
with the CA externally using ACME through certbot. The set
of authorized domains is managed by the asceds-authorized-
domains script.

Inside the enterprise network, the certificate manager com-
municates through ssh/scp on an asceds local account with the
clients having ASCEDS installed. Communication consists in:

« pulling the certificate configuration file cert.conf from the
client, containing information about FQDN, SAN list,
certificate encoding, and type of client;

« pushing the newly generated or renewed certificate files;

o pushing the updated site configuration file asceds-
site.conf, as described in Section III.

Three types of clients are supported, offering different levels
of automation:

« fully managed: ASCEDS installed and configured on the
client, the certificate update process happens automati-
cally;

o privately managed: while the software is installed and
configured, the client needs to be put in full ASCEDS
access mode to propagate certs, i.e. the asceds account
must be accessible in r/w mode from the certificate
manager;

« unmanaged: no ASCEDS installed on the client; certs and
updates are propagated by hand by the sysadmin of the
client (e.g. NAS, printer, switch, Windows/MacOS).

Most of the automation is realized through cron scripts trig-
gered at configurable intervals, both on the certificate manager
and on the clients.

ASCEDS contains a set of shell scripts which are self-
consistent and independent, such that they can be recombined
in any number of ways to perform the certificate management,
or to fix broken/inconsistent states of certificates. All the
ASCEDS scripts have a ”-h” option which lists a manual page.
There is a stand alone asceds command which describes the
structure of the software, lists the local computer configuration
as a client, and extracts any recent warnings or errors from

CA

I ACME

CERTIFICATE MANAGER

CcLI WEBSITE
asceds apachez2
cran php

certbot (snap)

CLIENT l
CLIENT h 4
CLIENT
CLIENT 4

shibboleth [opt)

asced

cron asced
cron asced CLIENT | v
cron asced CLIENT
cron asced
cron asceds
cron

Fig. 1. ASCEDS architecture.

the log files. For certificate managers, options of asceds allow
listing of details and status for the clients based on different
criteria, as client type or substring matches in their FQDN.

All the scripts start by executing a set of configuration files
provided by ASCEDSCONF in the order specified by the vari-
able. First, all the default settings are loaded from prototype
files distributed with ASCEDS, then the corresponding custom
files from /etc/asceds/ overwrite the defaults.

To support large environments with multiple units which
don’t share trust, ASCEDS starts a php web user interface on
the certificate manager. The interface should run under the root
of a virtual website, and was tested with the Apache webserver.
A multi-user environment tested with shibboleth and with the
Apache native simple authentication is offered. Each user has
authority to generate certificates for a certain set of domains,
which can be configured through the asceds-web-user script.

The web interface works based on a set of request queues
for generating certificates for unmanaged clients, revoking
certificates, and creating/propagating certificates for managed
clients. The requests in the queues are logged, and can be
executed immediately by ssh, or later on by the cron jobs
in asceds-web-actions. This mechanism ensures that requests
which cannot be performed immediately will be re-tried later
until their execution is successful.

The next section presents the workflow of several typical
scenarios implemented in ASCEDS.

III. ASCEDS SITE MANAGEMENT

An ASCEDS site has one certificate manager and a set
of clients as described in Section II. The certificate manager
generates the site configuration file /etc/asceds/asceds-site.conf
during the initial setup, as described in Section IV-A. There

CERTIFICATE MANAGER
asceds-certmanager-setup

ite.conf

client!
.newsiteconf;

CLIENT

[— asceds-update-siteconfig -c

apache)1—

I

asceds-certbot-gencert

cron.d/
~asceds/ asceds-cernt-refresh
—l == |
asceds-service-reconfig -t
stale
asceds-update-siteconfig -c

[poncom } =

cron.d/
asceds-cert-propagate

asceds-propagate-certbot

asceds-send-cert -c client

asceds-web-propagate (—

Fig. 2. Site configuration file distribution.

are two distribution mechanisms to share the site configuration
file with the clients: pull from the client through wget and
push from the certificate manager through scp. The diagram
for the site configuration file distribution mechanisms is shown
in Fig. 2.

For the pull mechanism, the site configuration file is
symlinked to the public directory of the certificate manager
website, and accessible only to the domains served by the
certificate manager. During the initial setup of each client,
the site configuration file is retrieved from the certificate
manager’s website as described in Section IV-B. Pulling the
site configuration file is also useful for the privately managed
clients, or cases when pushing doesn’t work (e.g. the asceds
ssh keys on the certificate manager are changed).

The site configuration file can be updated using asceds-
update-siteconfig -s and pushed to the clients. The following
information is distributed with the file:

o the alarm email address ALARM where fatal errors are
sent (typically a ticketing system queue); if ALARM is
empty, no emails are sent;

« the certificate manager hostname ASCEDSCRTMGR;

« information about certificates being self-signed or gener-
ated by a CA, which should reflect into wget arguments;

« the asceds account ssh public key ASCEDSSSHPUBKEY
used to create authorized_keys files on the clients, to fa-
cilitate pushing updated certificates and site configuration
files;

« the list of certificate encoding algorithms ASCEDSEN-
CLIST offered by the certificate manager.

The site configuration file has an automatic push distribu-
tion mechanism which takes care of propagating an updated
version to the known managed clients. This mechanism works
similarly to propagation of renewed certificates, described in
Section IV-C. When asceds-update-siteconfig -s is used on the
certificate manager, new site configuration triggers .newsite-
conf are created for all the managed clients, except the certifi-
cate manager itself, and placed in ~asceds/(managed_client)/.
The new site configuration file asceds-site.conf is copied in

the same locations. Then, cron runs asceds-propagate-certbot
which pushes the new site configuration file to the fully
managed clients, creates a .site-reconf trigger in ~asceds/ on
the client, and deletes .newsiteconf. The cron driven asceds-
service-reconfig -t on the client completes refreshing asceds-
site.conf and deletes the .site-reconf trigger. The privately
managed clients must run asceds-update-siteconfig -c¢ by hand
to refresh the site configuration file as shown in Fig. 2.

The asceds-update-siteconfig script is used to handle the
site configuration file both on the certificate manager (’-s”
flag) and on the clients (”-c” flag). On the certificate manager,
it performs the following actions:

o creates/updates the site config file asceds-site.conf; the
name of the certificate manager can be changed only if
asceds-update-siteconfig is ran from asceds-certmanager-
setup;

o if certificate manager name is a CNAME, checks if it
resolves to the same IP address, and adds it to hosts,
postfix, openssl.cnf;

o refreshes symlink to make the site configuration file
available by wget to clients;

e copies the new site configuration file into the managed
client directories and adds the .newsiteconf trigger file to
all the managed clients except cert manager itself;

« on the cert manager, copies the new site configuration file
into ~asceds/.

The certificate manager name used by the site can be spec-
ified through the variable ASCEDSALTCRTMGR (passed
by asceds-certmanager-setup -s), through ASCEDSCRTMGR
from an existing asceds-site.conf, or through terminal input,
whichever method succeeds first.

On the clients, asceds-update-siteconfig -c performs the
following actions:

« retrieves the site configuration file from the certificate

manager webserver using wget;

« parses the file and creates /etc/asceds-site.conf;

« uses the site ssh public key from the new asceds-site.conf
to create/update authorized_keys.

If the asceds ssh key is changed on the certificate manager,
the ability to automatically push updates to the clients is
lost. To avoid this situation, the cron driven asceds-service-
reconfig script refreshes the site configuration file pulling
it through asceds-update-siteconfig -c if the certificates in
~asceds/certs/ are stale (expiring in the next 5 days), as
described in Section IV-B. Migrating to a new certificate
manager (different site name) can be accomplished only by
running asceds-init by hand on each of the managed clients.

IV. ASCEDS AcCTION CHAINS

Handling certificates typically consists of a small number of
scenarios which involve executing a set of ASCEDS scripts,
named here action chains.

A. Initial Setup of the Certificate Manager

The central role in the ASCEDS structure is played by
the certificate manager. It can be installed by running the

asceds-certmanager-setup script as root on the server which
is authorized by the CA to handle certificates. The -s” option
can be used if a CNAME is preferred for the certificate
manager. Otherwise, ASCEDS sets the name provided by the
“hostname -f” output.

The asceds-certmanager-setup script performs the following
operations:

o checks/fixes the network configuration of the certificate
manager;

o checks for certbot; if not found, it offers to use a fake
certbot which generates self signed certificates, which is
described in Section VI; otherwise, it requests a clean
certbot install and exits;

« configures certbot credentials and authorized domains in
the asceds-certbot.conf file;

« creates asceds user ssh keys;

o creates site configuration file using the asceds-update-
siteconfig -s script as described in Section III;

« creates symlinks to certobot-related ASCEDS scripts;

« sets cron job asceds-cert-propagate for driving the asceds-
propagate-certbot script to push renewed certificate files
to ~asceds/(client)/ and propagate them to managed
clients through asceds-send-cert,

o prepares up the web interface.

Web interface preparation involves the following steps:

« gets info: organization name, website URL, request exe-
cution methods;

« customizes etc/config.php and asceds.php for the website;

« copies and customizes the ASCEDS site configuration file
for Apache;

« initializes log file for web request history;

« builds the directory structure for the website;

« creates ssh keys for requests by ssh;

« creates symlink to make the site configuration file avail-
able by wget to clients;

o sets asceds-web-actions crontab for running the request
queues generated by the web interface.

Next step is to run the asceds-authorized-domains script if
this is a fresh install, otherwise the certificate manager rejects
any request.

The website still needs to be protected by the desired
type of authentication in the .htaccess file, then taken online
in the Apache setup after inspecting the configuration files
created by asceds-certmanager-setup. Before doing that, since
the website handles sensitive data, it is recommended to set
up the same computer as a client as well, as described in
Subsection IV-B, and to obtain certificates for itself first.

After the website was taken live in the Apache web server,
users can be configured through the asceds-web-user script.
The script is configuring simple authentication if the file
.htpasswd exists in the same directory as .htaccess. Otherwise,
shibboleth authentication is assumed. The list of users and
their domains is kept in the users.php website configuration
file. Web interface user names must be valid email addresses
or email aliases on the certificate manager. They are used

for sending email notifications when various requests are
completed by cron, and also when renewal certificates become
available.

The web interface limits the ability of web users to request
information about clients which are not in their domains, or
to add SANs which are in such domains. However, web users
can remove from the SAN list a CNAME which is not in
their domains. Also, web users can revoke the certificate if
the client FQDN is in their domain list, even if the SAN list
contains a CNAME which is not in the user’s domain list.

The asceds-propagate-certbot script detects new certificate
files created by certbot, and copies them to a location accessi-
ble to ASCEDS for managed clients, or into the website space
for unmanaged clients. A new certificate trigger is created as
.newcerts in ~asceds/{managed_client)/ for managed clients.
The script is used to automatically propagate renewed certifi-
cates through the asceds-cert-propagate cron job, as well as to
perform initial setup or configuration changes of certificates
through the website requests and through the CLI scripts.
The certificates are propagated to the fully managed clients
by running the asceds-send-cert script as user asceds, or
the requestor is notified by email about the certificate files
availability for the other cases.

The asceds-send-cert script runs as user asceds. It sends the
new site configuration file (if the trigger .newsiteconf exists on
the certificate manager) to the clients by scp, and sets a site
reconfiguration file trigger ~asceds/.site-reconf on the client,
as shown in Fig. 2. Then it sends the new certificate files (if
the trigger .newcerts exists on the certificate manager) to the
clients by scp, and sets a certificate reconfiguration trigger
as ~asceds/.asceds-reconf on the client. If the transfer is
successful, the triggers on the certificate manager are removed.
The clients use the reconfiguration triggers through the cron
driven asceds-service-reconfig script which refreshes the site
configuration file and reconfigures services with the new
certificate as described in Subsection IV-A. Fully managed
clients which are unreachable for pushing updates are flagged
through files in ~asceds/down, and an email message is sent
to ALARM. When the client reconnects to the network, the
flag is removed.

B. Initial Setup of a Managed Client

Initializing ASCEDS has the purpose to attach a managed
client to the certificate manager. This is the most important
action for proper certificate handling, and should be performed
only once after a fresh install by using the asceds-init script.
The ”-s” option may be used to specify the certificate manager
of the site.

The initializing procedure is the same for fully managed or
privately managed clients. both categories will need to offer
read/write access for the certificate manager to the asceds user
home directory for the duration of the procedure. The privately
managed clients should use the ”-r” flag for denying further
certificate manager access after initialization is completed.

There are two ways to initialize ASCEDS:

CERTIFICATE MANAGER

config

eus.sam.upaaue K

asceds-init -s cert_manager

Client
config

L—)-l asceds-client-setup -s -c client

|asceds-cenhm-gencm - ¢ client -s sans }——)

asceds-services
~asceds/
asceds-reconf’
I

asceds-service-reconfig -s service |

d: nd-cert -c client

Fig. 3. Initial setup sequence of a client.

« if root access to the certificate manager is known, the
asceds-init command as root performs the entire opera-
tion, as shown in Fig. 3.

o otherwise, the asceds-init command on the client should
be followed by requesting creation and propagation of the
certificates through the website as described in Section V,
then followed by running asceds-services on the client
after the certificates were delivered, to configure them
into the services.

The asceds-init script performs the following operations:

o checks/fixes the network configuration of the certificate
manager;

o builds the certificate manager website URL, and checks
its availability;

« retrieves by wget and parses the site configuration file
from the certificate manager, using the asceds-update-
siteconfig -c script as described in Section III and Fig. 2;

o sets the certificate encoding in ~asceds/asceds-
hostconf.conf; to change the encoding, asceds-init
should be ran again;

« generates the configuration file ~asceds/cert.conf for the
certificate, containing the name, the type of client, the
SAN list, and the encoding, using the asceds-sans-update
script;

« creates asceds-cert-refresh crontab which automatically
detects and reconfigures the site configuration file and
the services when updates are available;

o if root access to the certificate manager is available,
the asceds-client-setup script is run remotely to generate
certificate files and/or push them to the client;

« if a new certificate was obtained and propagated to the
client, runs asceds-services.

The asceds-sans-update script is used to change the SAN
list for the client. Normally, SANs are parsed out of /etc/ss-
l/openssl.cnf and loaded into the certificate configuration file
which is made available to the certificate manager. However,
alternate host names affect the network configuration of the
client and other services like postfix. Currently modifying
the SAN list in openssl.cnf also reconfigures /etc/hosts and
/letc/postfix/main.cf. If asceds-sans-update is used in stand-

alone mode, it provides instructions about how to complete
the operation, as described in Subsection IV-D.

The asceds-client-setup script assists the initial setup of a
new managed client on the certificate manager. It performs the
following operations:

o retrieves the cert.conf file by scp from the client and
stores it into ~asceds/(client)_cert.conf;

« generates the certificate files into ~asceds/(client)/, by
using the asceds-certbot-gencert script;

o propagates the certificates back to the client by using the
asceds-send-cert script described in Subsection IV-A.

The asceds-certbot-gencert script generates new certs using
certbot which stores the files in /etc/letsencrypt/live/. First the
hostname and the SANs are matched against the authorized
domains. Then the certificate files are requested using certbot.
If the certificates were generated successfully, for managed
clients they are copied to ~asceds/{client)/ which is accessible
to ASCEDS. For unmanaged clients the certificate files are
copied into the website space at an obfuscated location un-
der /usr/share/asceds/cert/keys/. Since asceds-certbot-gencert
is basically a “certbot certonly” wrapper, for easy debugging
and to prevent errors the certbot command is actually issued
only if the ”-e” option is used or if CERTBOTEXEC is not
empty, otherwise it is just listed to the standard output.

The asceds-services script can add/remove/refresh services
which need certificates and can be reconfigured by ASCEDS.
The library of available services is given by the *.sh.proto
scripts in /usr/lib/asceds/bin/service.d/. Activating a service,
copies the prototype file to /etc/asceds/service.d/ keeping just
the .sh extension. Only these files are executed when a new
certificate triggers service reconfiguration. The .sh files can
be adjusted easily to match the specifics of the service on that
particular client. They will not be overwritten by ASCEDS
upgrades. Refreshing the service restores the default script,
equivalent with first de-activate and then activate. The last
version of the removed script is backed-up using a .bak
extension. Deactivation requests are executed first. The script
offers a simple CLI interactive interface if no request is
specified in the command line. If a service is activated, the
script asceds-service-reconfig is run to configure it with the
certificate. Some of the scripts are self-configuring at the first
use, to be able to find the current location of the existing
services. Thus, the .sh file might be different from the .sh.proto
file from the distribution.

The asceds-service-reconfig script has two modes of oper-
ations:

o a cron mode with the ”-t” option, which reconfigures all
the active services but only if the .asceds-reconf trigger
file exists; the ”-s” option is ignored;

o an individual service mode with the ”-s” option, which
reconfigures only the specified services and doesn’t check
on any trigger.

The script performs the following operations:

« updates the site configuration file using the trigger if the
.site-reconf trigger file exists; removes the trigger file;

CERTIFICATE MANAGER

I systemd }—)I certbot renew |

cron.df
asceds-cert-propagate Iml

CLIENT

cron.d!
asceds-cert-refresh

~asceds/
asceds-reconf

| asceds-service-reconfig -t |

stale

AN

| asceds-update-siteconfig -¢ |

website

Fig. 4. Mechanism for automatic certificate update.

o checks if the available certificate is not stale; if the
certificate is stale, refreshes the site configuration file if
stale; if it is almost expired, send message to ALARM;

« copies certificate files to locations in /etc/ssl/, with the
right permissions to preserve their security;

« reconfigures/restarts services through the .sh scripts from
/etc/asceds/service.d/.

« in cron mode it removes the trigger file if execution was
successful.

C. Push Automatically Renewed Certificates to Clients

The main time-saving feature of ASCEDS is to offer au-
tomatic handling of certificate renewals on the fully managed
clients. The mechanism for pushing renewed certificates to
managed clients is shown in Fig. 4.

When certificates are close to expiration, certbot-renew
obtains renewals, process driven either by a cron job or by
a systemd timer. Then, depending on the client type, the
certificate files are propagated through a set of cron jobs and
triggers.

On the certificate manager side, the asceds-cert-propagate
cron job is checking for renewed -certificates through the
asceds-propagate-certbot script, as described in Subsec-
tion IV-A.

On the clients side, there are several possible cases:

o fully managed clients use the asceds-cert-refresh cron
job, driving the asceds-service-reconfig script which
is reconfiguring services automatically if the trigger
~asceds/.asceds-reconf exists, and deletes the trigger if
successful reconfiguration took place;

« privately managed clients receive email notification; read-
/write access to their asceds account needs to be enabled,
then the new certificate is propagated through the web
interface;

« unmanaged clients receive email notification; the admin-
istrator uses the web interface to download the new
certificate files, then reconfigures the services.

Using cron jobs and triggers ensures that operations which did
not complete successfully because of temporary causes (e.g.
network failure), will be attempted again later.

CLIENT

CERTIFICATE MANAGER

asceds-client-setup -c client

| asceds-certbot-gencert -& - client -s sans |——>

client/
newcerts

asceds-send-cert -c client

asceds-service-reconfig -t

Fig. 5. Change-configuration sequence for a certificate.

D. Reconfiguration of a Managed Client

Another typical scenario is when a certificate, even if not
close to expiration, needs to be reconfigured or re-created.
The most common configuration change is adding or deleting
components of the SAN list.

Reconfiguration of the managed clients is done using
the asceds-sans-update script, described in Subsection IV-B,
which generates a new certificate configuration file cert.conf.
The action chain continues by running the asceds-client-setup
script described in Subsection IV-B on the certificate manager.
If root access is available, this can done directly as shown in
the diagram from Fig. 5. Otherwise, the web interface can
be used to run it through the asceds-web-propagate script
which will be explained in Section V. At this stage, the
reconfigured certificate files were generated and propagated
to the client. To finalize the process, the script asceds-service-
reconfig described in Subsection IV-A should be run on the
client, or will be automatically run when it is scheduled by
the asceds-cert-refresh cron job on the fully managed clients.

For the unmanaged clients, the process is completed man-
vally through the web interface, which allows editing the
SAN list and generating a new certificate which can be then
downloaded as will be described in Section V.

E. Revoking Certificates

Revoking certificates is needed when servers are decom-
missioned. Currently, ASCEDS allows certificate revocation
through the asceds-certbot-revoke script. The procedure is
the same for managed and unmanaged clients. The script
can be run directly if root access for the certificate manager
is available, or using the web interface which thriggers the
asceds-web-unmanaged script explained later in Section V.

The asceds-certbot-revoke script should be used as root on
the certificate manager. It lists the status of the certificate
(validity, SAN list), then prompts certbot for revocation. Since
the operation cannot be reversed, the revoked certificate files
are removed from ~asceds/, and also from the web interface
space for unmanaged clients. Since asceds-certbot-revoke is
basically a “certbot revoke” wrapper, for easy debugging and
to prevent errors, the certbot command is actually issued only
if the ”-e” option is used or if CERTBOTEXEC is not empty,
otherwise it is just listed to the standard output.

revoke cert

index.php host_check.php <
client_type INFC
hostname download revoke_cert.php
domain -
[generate:
revoke

managed
l—r unmanaged

asceds_cert.php ¢ v reguest_cert.php
config edit_cert.php
generate/propagate INFO generate cert —

cert

INFO

add SANs

remove SANs

Fig. 6. Web interface structure for self-service.

V. ASCEDS WEB INTERFACE

The web interface is intended to:

« limit superuser access to the certificate manager, which
may be a security concern in enterprise networks;

« allow multiple users to control their own set of domains,
as described in Section II;

« distribute the site configuration file, as described in Sec-
tion IL

Functionally, the web interface can deal with three types of
operations:

« revoking certificates for managed or unmanaged clients;

o configuring and creating certificates for unmanaged
clients;

e propagating requests from managed clients, generating
the certificates, and submitting them back to the client.

Each of these operations is associated with a request queue
which is executed as described in Section II. To avoid race
conditions between different requests and to preserve atomicity
of operations, only one request of any type may exist for a
specific host name in the queues. All the operations performed
through the queues, and the users requesting them, are logged
into /var/log/asceds/request.history.

The web interface has the structure shown in fig. 6. The
index.php page has the purpose of collecting information about
the host name of interest, as well as documenting the layout of
the entire process. This page uses GET to send the variables
client_type, hostname, and domain to host_check.php. Here,
the information is validated against the user authority and
against the list of allowed domains. If everything checks out,
the page searches for existing information about the provided
host name. Data about an existing certificate is listed and
download links for certificate files are shown for unmanaged
clients. The page shows a ”Create/Renew” button which acts
differently based on the type of client, while taking care that
the type is not changed inadvertently. Also, if a certificate
exists, a "Revoke” button is exhibited.

The "Revoke” button uses POST to submit the host infor-
mation (name, domain, and SANs) to revoke_cert.php. This
page validates the data, checks for race conditions, then places
a request in the revoke queue. If the queue is ssh-driven, it

is executed immediately by the asceds-web-unmanaged script
with the ”-r” option. Otherwise, the asceds-web-actions cron
job will run the script at the time it is scheduled.

The ”Create/Renew” button on host_check.php submits the
unmanaged client host information to edit_cert.php. This page
allows recursively submitting the data to itself while editing
the SAN list. In the end, the host information is submitted to
request_cert.php through the “Generate Certificate” button.

The code in request_cert.php validates the data, checks for
race conditions, then places a request in the new certificate
queue. If the queue is ssh-driven, it is executed immediately by
the asceds-web-unmanaged script with the ”-n” option. Other-
wise, the asceds-web-actions cron job will run the script at the
time it is scheduled. The certificate files can be downloaded
through a link pointing back to the host_check.php page.

For managed clients, the “Create/Renew” button on
host_check.php submits the managed client host information
to asceds_cert.php. This page performs the following checks:

« validates the POST data;

« checks if the certificate manager has ssh read/write access
to the client;

« checks if the new certificate configuration file is available
on the client.

To fulfill all these conditions, the page recursively evolves
through the tests and offers instructions to the user for fixing
any problems which are encountered. If all the tests are passed,
the page checks for race conditions and places a request in
the propagate queue. If the queue is ssh-driven, it is executed
immediately by the asceds-web-propagate script. Otherwise,
the asceds-web-actions cron job will run the script at the time
it is scheduled.

The asceds-web-unmanaged script executes web interface
revoke and new certificate requests. The revoke request trig-
gers the execution of the asceds-certbot-revoke script de-
scribed in Subsection IV-E. The new certificate request builds
a certificate configuration file in ~asceds following the format
used by ASCEDS managed clients. Then it executes the
asceds-certbot-gencert script described in Subsection IV-B.

The asceds-web-propagate script executes web interface
propagate requests. If new certificate files don’t exist (sig-
naled by a missing .newcerts file) they are created using the
asceds-client-setup script described in Subsection IV-B, and
the .newcerts flag file is set in ~asceds/(managed_client)/.
Otherwise, the existing certificate files are sent to the client by
the asceds-send-cert script. This way, if an automatically gen-
erated renewal exists, it will be propagated before generating
a new certificate, which should happen in a different request
after the renewed certificate is on the client. As a side effect,
asceds-web-propagate sends the updated site configuration file
to the client if the trigger file .newsiteconf exists, as shown in
Fig. 2.

Upon successful completion, the request files are removed
from the queue. Also, if the request script is run by cron
(without the ”-c” option), an email notification is sent to the
web user.

The website can be customized by adding banners named REFERENCES
org-custom.png and dept—custom.png in the pUth/ﬁgS/ di- [1] Florin Manolache, Octavian Rusu, Automated SSL/TLS Certificate Dis-
rectory of the website. These banners will be displayed tribution System, 20th RoEduNet Conference: Networking in Education
in the header of the web pages. Php code placed in and Research, 2021.))
hp is displ d under the title of h [2] Jonathan Katz, Yehuda Lindell, Introduction to Modern Cryptography,
~asceds/custom.php is displayed under the title of each page. CRC Press, 2007.

[3] David R. Mirza Ahmad, et al, Hack Proofing Your Network, 2nd Edition,
Syngress, 2000.
VI. TESTING WITH SELF-SIGNED CERTIFICATES [4] Let’s Encrypt, Chain of Trust, https://letsencrypt.org/certificates/
[5] Rolf Oppliger, SSL and TLS: Theory and Practice, Artech House, 2009.
Asceds offers a fake certbot testing environment which can [6] Patrick Nohe, Maximum SSL/TLS Certificate Validity is Now One Year,
. . . . https://www.globalsign.com/en/blog/maximum-ssltls-certificate- validity-now-one- yea
be used with self s1gned certificates, without any ACME server [7] Let’s Encrypt, Let’s Encrypt Documentation, https://letsencrypt.org/docs/
or credentials. This environment can be optionally triggered [8] Internet Engineering Task Force, Automatic Certificate Management

during the asceds-certmanager-setup execution, if no existing Environment (ACME), https://tools.ietf.org/html/rfc8555
. . . . [9] Electronic Frontier Foundation (EFF), Certbot, https://certbot.eff.org/
or previous installation of real certbot is detected. [10] InCommon, InCommon Certficate Service

The fake certbot environment is provided in the in /us- https://incommon.org/certificates/repository/
r/lib/asceds/ss directory. It contains a certbot shell script which
mimics the real certbot behavior, and a certbot-selfsigned-
refresh script which is ran by the asceds-selfsigned-refresh
crontab to renew certificates older than 3 days before expi-
ration.

During the installation, the fake certbot environment creates
an /etc/letsencrypt directory tree similar to the one used by
a real certbot, and places a .fake signature file inside. This
signature is verified during future installs, to make sure a real
certbot installation is not overwritten.

The configuration file used by the fake certbot is
/etc/asceds/certbot-ss.conf. The file contains the default certifi-
cate expiration term CERTTERM (default 10 years), as well
as information used for self-signed certificate content.

The fake certbot environment is useful for testing and
development of ASCEDS, and as emulator for demo purpose.

VII. CONCLUSIONS

This paper presents the ASCEDS software which performs
automated SSL/TLS certificate handling for a large computer
network using one certificate manager and a CA provider
offering an ACME interface. The software was developed and
is currently used in a production environment at Carnegie
Mellon University. The certificate management system can
interact through a multi-user web interface or through a
CLI, offering a simple API to the managed clients consisting
of a read/write asceds account accessible through ssh from
the certificate manager, and a certificate configuration file.
ASCEDS decreased significantly the system administrator’s
time to generate/reconfigure/revoke certificates, by replacing
most of these operations by several mouse clicks, or making
them completely automatic wherever possible.

Currently, ASCEDS clients work on several flavors of Linux
(Debian, Ubuntu, ArchLinux, Raspbian, CentOS 7), and the
list of supported services includes apache, dovecot, grafana,
kvmd-nginx, nginx, prayer, and jupyterhub. The certificate
manager was tested on Ubuntu 18.04 and newer. Future work
will be oriented towards developing clients for other operating
systems, as well as adding new modules for various services
which may benefit from SSL/TLS certificates.

